129 research outputs found

    Automatic adjustment of pressure support by acomputer-driven knowledge-based system during noninvasive ventilation: afeasibility study

    Get PDF
    Objective: To evaluate the feasibility of using aknowledge-based system designed to automatically titrate pressure support (PS) to maintain the patient in a"respiratory comfort zone” during noninvasive ventilation (NIV) in patients with acute respiratory failure. Design and setting: Prospective crossover interventional study in an intensive care unit of auniversity hospital. Patients: Twenty patients. Interventions: After initial NIV setting and startup in conventional PS by the chest physiotherapist NIV was continued for 45 min with the automated PS activated. Measurements and results: During automated PS minute-volume was maintained constant while respiratory rate decreased significantly from its pre-NIV value (20 ± 3 vs. 25 ± 3 bpm). There was atrend towards aprogressive lowering of dyspnea. In hypercapnic patients PaCO2 decreased significantly from 61 ± 9 to 51 ± 2 mmHg, and pH increased significantly from 7.31 ± 0.05 to 7.35 ± 0.03. Automated PS was well tolerated. Two system malfunctions occurred prompting physiotherapist intervention. Conclusions: The results of this feasibility study suggest that the system can be used during NIV in patients with acute respiratory failure. Further studies should now determine whether it can improve patient-ventilator interaction and reduce caregiver workloa

    Performance of noninvasive ventilation algorithms on ICU ventilators during pressure support: a clinical study

    Get PDF
    Objective: To evaluate the impact of noninvasive ventilation (NIV) algorithms available on intensive care unit ventilators on the incidence of patient-ventilator asynchrony in patients receiving NIV for acute respiratory failure. Design: Prospective multicenter randomized cross-over study. Setting: Intensive care units in three university hospitals. Methods: Patients consecutively admitted to the ICU and treated by NIV with an ICU ventilator were included. Airway pressure, flow and surface diaphragmatic electromyography were recorded continuously during two 30-min periods, with the NIV (NIV+) or without the NIV algorithm (NIV0). Asynchrony events, the asynchrony index (AI) and a specific asynchrony index influenced by leaks (AIleaks) were determined from tracing analysis. Results: Sixty-five patients were included. With and without the NIV algorithm, respectively, auto-triggering was present in 14 (22%) and 10 (15%) patients, ineffective breaths in 15 (23%) and 5 (8%) (p=0.004), late cycling in 11 (17%) and 5 (8%) (p=0.003), premature cycling in 22 (34%) and 21 (32%), and double triggering in 3 (5%) and 6 (9%). The mean number of asynchronies influenced by leaks was significantly reduced by the NIV algorithm (p<0.05). A significant correlation was found between the magnitude of leaks and AIleaks when the NIV algorithm was not activated (p=0.03). The global AI remained unchanged, mainly because on some ventilators with the NIV algorithm premature cycling occurs. Conclusion: In acute respiratory failure, NIV algorithms provided by ICU ventilators can reduce the incidence of asynchronies because of leaks, thus confirming bench test results, but some of these algorithms can generate premature cyclin

    Neurally adjusted ventilatory assist (NAVA) improves patient-ventilator interaction during non-invasive ventilation delivered by face mask

    Get PDF
    Purpose: To determine if, compared to pressure support (PS), neurally adjusted ventilatory assist (NAVA) reduces patient-ventilator asynchrony in intensive care patients undergoing noninvasive ventilation with an oronasal face mask. Methods: In this prospective interventional study we compared patient-ventilator synchrony between PS (with ventilator settings determined by the clinician) and NAVA (with the level set so as to obtain the same maximal airway pressure as in PS). Two 20-min recordings of airway pressure, flow and electrical activity of the diaphragm during PS and NAVA were acquired in a randomized order. Trigger delay (T d), the patient's neural inspiratory time (T in), ventilator pressurization duration (T iv), inspiratory time in excess (T iex), number of asynchrony events per minute and asynchrony index (AI) were determined. Results: The study included 13 patients, six with COPD, and two with mixed pulmonary disease. T d was reduced with NAVA: median 35ms (IQR 31-53ms) versus 181ms (122-208ms); p=0.0002. NAVA reduced both premature and delayed cyclings in the majority of patients, but not the median T iex value. The total number of asynchrony events tended to be reduced with NAVA: 1.0events/min (0.5-3.1events/min) versus 4.4events/min (0.9-12.1events/min); p=0.08. AI was lower with NAVA: 4.9 % (2.5-10.5 %) versus 15.8 % (5.5-49.6 %); p=0.03. During NAVA, there were no ineffective efforts, or late or premature cyclings. PaO2 and PaCO2 were not different between ventilatory modes. Conclusion: Compared to PS, NAVA improved patient ventilator synchrony during noninvasive ventilation by reducing T d and AI. Moreover, with NAVA, ineffective efforts, and late and premature cyclings were absen

    Patient-ventilator asynchrony during non-invasive ventilation for acute respiratory failure: a multicenter study

    Get PDF
    Objective : To determine the prevalence of patient-ventilator asynchrony in patients receiving non-invasive ventilation (NIV) for acute respiratory failure. Design : Prospective multicenter observation study. Setting : Intensive care units in three university hospitals. Methods: Patients consecutively admitted to ICU were included. NIV, performed with an ICU ventilator, was set by the clinician. Airway pressure, flow, and surface diaphragmatic electromyography were recorded continuously for 30min. Asynchrony events and the asynchrony index (AI) were determined from visual inspection of the recordings and clinical observation. Results: A total of 60 patients were included, 55% of whom were hypercapnic. Auto-triggering was present in 8 (13%) patients, double triggering in 9 (15%), ineffective breaths in 8 (13%), premature cycling 7 (12%) and late cycling in 14 (23%). An AI>10%, indicating severe asynchrony, was present in 26 patients (43%), whose median (25-75 IQR) AI was 26 (15-54%). A significant correlation was found between the magnitude of leaks and the number of ineffective breaths and severity of delayed cycling. Multivariate analysis indicated that the level of pressure support and the magnitude of leaks were weakly, albeit significantly, associated with an AI>10%. Patient comfort scale was higher in pts with an AI<10%. Conclusion: Patient-ventilator asynchrony is common in patients receiving NIV for acute respiratory failure. Our results suggest that leaks play a major role in generating patient-ventilator asynchrony and discomfort, and point the way to further research to determine if ventilator functions designed to cope with leaks can reduce asynchrony in the clinical settin

    Neurally adjusted ventilatory assist improves patient-ventilator interaction

    Get PDF
    Purpose: To determine if, compared with pressure support (PS), neurally adjusted ventilatory assist (NAVA) reduces trigger delay, inspiratory time in excess, and the number of patient-ventilator asynchronies in intubated patients. Methods: Prospective interventional study in spontaneously breathing patients intubated for acute respiratory failure. Three consecutive periods of ventilation were applied: (1) PS1, (2) NAVA, (3) PS2. Airway pressure, flow, and transesophageal diaphragmatic electromyography were continuously recorded. Results: All results are reported as median (interquartile range, IQR). Twenty-two patients were included, 36.4% (8/22) having obstructive pulmonary disease. NAVA reduced trigger delay (ms): NAVA, 69 (57-85); PS1, 178 (139-245); PS2, 199 (135-256). NAVA improved expiratory synchrony: inspiratory time in excess (ms): NAVA, 126 (111-136); PS1, 204 (117-345); PS2, 220 (127-366). Total asynchrony events were reduced with NAVA (events/min): NAVA, 1.21 (0.54-3.36); PS1, 3.15 (1.18-6.40); PS2, 3.04 (1.22-5.31). The number of patients with asynchrony index (AI) >10% was reduced by 50% with NAVA. In contrast to PS, no ineffective effort or late cycling was observed with NAVA. There was less premature cycling with NAVA (events/min): NAVA, 0.00 (0.00-0.00); PS1, 0.14 (0.00-0.41); PS2, 0.00 (0.00-0.48). More double triggering was seen with NAVA, 0.78 (0.46-2.42); PS1, 0.00 (0.00-0.04); PS2, 0.00 (0.00-0.00). Conclusions: Compared with standard PS, NAVA can improve patient-ventilator synchrony in intubated spontaneously breathing intensive care patients. Further studies should aim to determine the clinical impact of this improved synchron

    Effects of helium-oxygen on respiratory mechanics, gas exchange, and ventilation-perfusion relationships in a porcine model of stable methacholine-induced bronchospasm

    Get PDF
    Objective: To explore the consequences of helium/oxygen (He/O2) inhalation on respiratory mechanics, gas exchange, and ventilation-perfusion (VA/Q) relationships in an animal model of severe induced bronchospasm during mechanical ventilation. Design: Prospective, interventional study. Setting: Experimental animal laboratory, university hospital. Interventions: Seven piglets were anesthetized, paralyzed, and mechanically ventilated, with all ventilator settings remaining constant throughout the protocol. Acute stable bronchospasm was obtained through continuous aerosolization of methacholine. Once steady-state was achieved, the animals successively breathed air/O2 and He/O2 (FIO2 0.3), or inversely, in random order. Measurements were taken at baseline, during bronchospasm, and after 30min of He/O2 inhalation. Results: Bronchospasm increased lung peak inspiratory pressure (49±6.9 vs 18±1cmH2O, P<0.001), lung resistance (22.7±1.5 vs 6.8±1.5cmH2O.l−1.s, P<0.001), dynamic elastance (76±11.2 vs 22.8±4.1cmH2O.l−1, P<0.001), and work of breathing (1.51±0.26 vs 0.47±0.08, P<0.001). Arterial pH decreased (7.47±0.06 vs 7.32±0.06, P<0.001), PaCO2 increased, and PaO2 decreased. Multiple inert gas elimination showed an absence of shunt, substantial increases in perfusion to low VA/Q regions, and dispersion of VA/Q distribution. He/O2 reduced lung resistance and work of breathing, and worsened hypercapnia and respiratory acidosis. Conclusions: In this model, while He/O2 improved respiratory mechanics and reduced work of breathing, hypercapnia and respiratory acidosis increased. Close attention should be paid to monitoring arterial blood gases when He/O2 is used in mechanically ventilated acute severe asthm

    Comparative effects of helium-oxygen and external positive end-expiratory pressure on respiratory mechanics, gas exchange, and ventilation-perfusion relationships in mechanically ventilated patients with chronic obstructive pulmonary disease

    Get PDF
    Objective: To compare the effects of He/O2 and external PEEP (PEEPe) on intrinsic PEEP (PEEPi), respiratory mechanics, gas exchange, and ventilation/perfusion (V̇A/Q̇) in mechanically ventilated COPD patients. Design and setting: Prospective, interventional study in the intensive care unit of a university hospital. Interventions: Ten intubated, sedated, paralyzed, mechanically ventilated COPD patients studied in the following conditions: (a) baseline settings made by clinician in charge, air/O2, ZEEP; (b) He/O2, ZEEP; (c) air/O2, ZEEP; (d) air/O2, PEEPe 80% of PEEPi. Measurements at each condition included V̇A/Q̇ by the multiple inert gas elimination technique (MIGET). Results: PEEPi and trapped gas volume were comparably reduced by He/O2 (4.2±4 vs. 7.7±4cmH2O and 98±82 vs. 217±124ml, respectively) and PEEPe (4.4±1.3 vs. 7.8±3.6cmH2O and 120±107 vs. 216±115ml, respectively). He/O2 reduced inspiratory and expiratory respiratory system resistance (15.5±4.4 vs. 20.7±6.9 and 19±9 vs. 28.8±15cmH2Ol−1s−1, respectively) and plateau pressure (13±4 vs. 17±6cmH2O). PEEPe increased airway pressures, including total PEEP, and elastance. PaO2/FIO2 was slightly reduced by He/O2 (225±83 vs. 245±82) without significant V̇A/Q̇ change. Conclusions: He/O2 and PEEPe comparably reduced PEEPi and trapped gas volume. However, He/O2 decreased airway resistance and intrathoracic pressures, at a small cost in arterial oxygenation. He/O2 could offer an attractive option in COPD patients with PEEPi/dynamic hyperinflatio

    Teamwork enables high level of early mobilization in critically ill patients

    Get PDF
    Additional file 2. Physiological responses of physiotherapy session. Values expressed as mean ± standard deviation; IB = In bed, IC = In chair, * different from baseline, ≈ different from 0 min

    Roeseler, Jean

    No full text

    Quelle place pour le kinésithérapeute aux soins intensifs ? ::éditorial

    No full text
    La rĂ©animation rassemble le personnel et le matĂ©riel destinĂ©s Ă  assurer en permanence les soins et la surveillance de tout malade Ă  haut risque. C’est un service oĂč il doit ĂȘtre possible de faire appel Ă  toutes les spĂ©cialitĂ©s, mĂ©dicales et paramĂ©dicales, en vue de maintenir ou/et de rĂ©tablir les fonctions vitales du patient. En France, le dĂ©cret n° 202-466 (article D.712-110) mentionne que « l’établissement de santĂ© doit ĂȘtre en mesure de faire intervenir en permanence un kinĂ©sithĂ©rapeute justifiant d’une expĂ©rience attestĂ©e en rĂ©animation ». Cependant, lorsqu’on se rĂ©fĂšre Ă  l’étude europĂ©enne de Norrenberg publiĂ©e en 2000, qui a recensĂ© les diffĂ©rents modes de fonctionnement des Ă©quipes de kinĂ©sithĂ©rapeutes en rĂ©animation [1], on observe que le rĂŽle du kinĂ©sithĂ©rapeute dans les services de rĂ©animation n’est pas trĂšs clair. Il est dĂ©crit comme variable d’un pays – voire d’un hĂŽpital – Ă  l’autre, et dĂ©pend grandement de la formation, des spĂ©cialisations, de l’expĂ©rience, de la motivation du kinĂ©sithĂ©rapeute et de l’organisation du service. [...] [Titre en anglais : What place for the physiotherapist in intensive care unit?
    • 

    corecore